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Flooding affects more people than any other environmental hazard and hinders
sustainable development'?. Investing in flood adaptation strategies may reduce the
loss of life and livelihood caused by floods’. Where and how floods occur and who is
exposed are changing as aresult of rapid urbanization*, flood mitigation infrastructure’
and increasing settlements in floodplains®. Previous estimates of the global
flood-exposed population have been limited by alack of observational data, relying
instead on models, which have high uncertainty®>’ . Here we use daily satellite
imagery at 250-metre resolution to estimate flood extent and population exposure for
913 large flood events from 2000 to 2018. We determine a total inundation area of
2.23 million square kilometres, with 255-290 million people directly affected by floods.
We estimate that the total populationinlocations with satellite-observed inundation
grew by 58-86 million from 2000 to 2015. This represents an increase of 20 to 24 per
centinthe proportion of the global population exposed to floods, ten times higher
than previous estimates’. Climate change projections for 2030 indicate that the
proportion of the population exposed to floods will increase further. The high spatial
and temporal resolution of the satellite observations willimprove our understanding
of where floods are changing and how best to adapt. The global flood database
generated from these observations will help to improve vulnerability assessments, the
accuracy of global and local flood models, the efficacy of adaptation interventions and
our understanding of the interactions between landcover change, climate and floods.

Damaging floods are increasing in severity, duration and frequency,
owing to changes in climate, land use, infrastructure and population
demographics”? . Anestimated $651billion (USD) in flood damages
occurred globally from 2000 to 2019°. Investments in flood adaptation
reduce mortality and asset losses*?. Yet, only 13% of disaster funds are
allocated to preparedness, mitigation and adaptation'. Fundamental
to prioritizing disaster mitigation efforts is quantifying global changes
in flood hazard, exposure and vulnerability. We use the IPCCY defini-
tions of ‘flood hazard’ as the frequency and magnitude of events and
of ‘exposure’ as the people, livelihoods, ecosystems and assets located
where ahazard has or could occur. ‘Vulnerability’ is defined as the pro-
pensity for loss of lives, livelihoods and property and for other aspects
of wellbeing to be adversely affected". Previous global flood exposure
and vulnerability studies have relied on modelled flood hazard”®'*?,
One study estimates that population growth in 100-year floodplains
(areas with a 1% annual flood probability) outpaced total population
by 2.6% from 1970 to 2010 in 22 countries’. Vulnerability influences a
wide range of adverse outcomes from flood events, including death,
disease, psychological trauma, migration, property loss and poverty.
Studies enabled by global flood models reveal trends including declines
inloss of life and reduced property damage when controlling for hazard

size**!, Sub-Saharan Africa is the only region with increasing flood
mortality rates since 1990, where urban flooding has been growing
and is expected to continue to do so”®.

Flood exposure and vulnerability assessments are limited by the
uncertainty in hazard models, which is due to the challenges of incor-
porating rapid anthropogenic change, toinadequate calibration data
and to poor quality topographic data. Humans modify land use and
rivers, shifting flood water and reshaping exposure>?, Differences in
modelling assumptionslead to high disagreement between population
and area exposure estimates across models®*. Contrary to models,
satellite-based remote sensing can directly observe inundation®?,
implicitly accounting for changesin climate, land use and infrastructure
that are not reflected in modelled flood extents.

Here we measure global flood exposure from earth-observing satel-
lites. We developed the Global Flood Database to systematically map
the maximum observed surface-water extent during 913 large flood
events documented by the Dartmouth Flood Observatory (DFO) from
20001t02018.The Global Flood Database (http://global-flood-database.
cloudtostreet.info/) complements existing surface-water products that
consist of monthly?® or daily?* observations by providing a geospatial
event catalogue toaid model calibrationand intercomparison®”. Witha
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Fig.1|Summary statistics of the Global Flood Database. a, Number of flood
eventsinthe Global Flood Database per country (colour scale), along with the
centroid locationsand areaof each flood event (circles). Countries withno
observations are shaded grey (NA, not available). b, Total (cumulative over
2000-2015) exposed population (circles) and exposed area (colour scale) per
country (Supplementary Table 6). ¢, Estimates of annual global population

spatial resolution of 250 m, the moderate-resolutionimaging spectrora-
diometer (MODIS; amultispectral optical instrument mounted on NASA’s
Terraand Aquasatellites that eachimage the globe daily*) resolveslarge,
slow-moving flood events, but has limited ability to resolve urban floods.
We estimate exposure trends using methods similar to a previous study’,
by comparing the proportion of the observed flood-exposed popula-
tionin 2015 to that in 2000 for each country (equation (6), Methods).
Owing to uncertainty in population data®, exposure is estimated as a
range across two datasets: the global human settlement layer (GHSL)*°
and the high-resolution settlement layer (HRSL)*. We then estimate
changeinflood exposure for the near future (2030), using flood hazard
extents from the Global Flood Risk with Image Scenarios (GLOFRIS)
model, which is based on present-day emissions scenarios* and socio-
economic trends® for large events (the 100-year return period). We
compare observations from the recent past (2000-2015) to modelled
estimatesin 2030 toidentify countries on slowing, continuingorincreas-
ing flood exposure trajectories. This analysis may enable prioritization
ofadaptation measures where flood exposure has been growing or may
grow faster than the total population under a changing climate.

Satellite-observed inundation

We analyse 12,719 MODIS images from 2000 to 2018 to produce
913 flood maps (Fig. 1a, Extended Data Fig. 1). We detected surface
water at 250-m spatial resolution by applying empirically derived
and Otsu-optimized thresholds®** (Extended Data Fig. 2) to the
short-wave-infrared, near-infrared and red bands (bands 7,2 and 1)
from MODIS. Results were validated using 30-m-spatial-resolution
Landsat scenes coincident with the day of maximuminundation (n=123
events) for 30,685 points, yieldingameanaccuracy of 83% (s.d. =15%)
for empirical thresholds and 80% (s.d. = 12%) for Otsu thresholds
(Extended DataFig. 3). Errors of commission (greater than 65%) were
concentrated in northern latitudes, where low sun angle on dark soil
causes low reflectance that mimics water®. Errors of omission show
no geographic pattern (Extended Data Figs. 4, 5).

(right axis, red shading; upper bound, GHSL; lower bound, HRSL) and area
inundated (leftaxis, blueline). The 913 flood events represent those for which
high-quality datawere available (Methods, ‘Flood map quality control’).
Population and areaexposure to floods are lowerin 2000 and 2001 untila
second satellite (MODIS Aqua) was launched, increasing the likelihood of
mappingaflood. Base maps: Natural Earth, tmap R package®'.

Of the 3,054 flood events in the DFO catalogue (compiled largely
from news reports), we successfully mapped 913 events with mostly
cloud-free MODIS observations. We found no temporal bias of events
over time due to increased news-media-reporting trends in the DFO
catalogue when compared to another database (the Emergency Events
Database®; Extended Data Fig. 9a). MODIS could not detect floods in
2,141 events because of persistent cloud cover (n=495 events), small or
flash floods (n =300 events), inaccurate catalogue locations (n=94),
complex terrain (for example, dense forest, cities; n = 44 events) or
otherreasons (n=1,208; Extended Data Fig. 6, Supplementary Table 9).
Event maps may underrepresent the maximum flood extent, owing to
the aforementioned uncertainty, and damaging floods underrepre-
sented by the media may be absent from the DFO catalogue.

Most events in the Global Flood Database occurred in Asia (n=398;
52inChinaand 85inIndia), followed by the Americas (n=223;98inthe
US), Africa (n=143), Europe (n=92) and Oceania (n=57; Fig.1a). Many
flood events occurred across multiple countries, giving rise to 2,617
single-country events observed by MODIS. We estimate that 255-290
million people (about 3% of the global population) have been exposed
to at least one observed event since 2000 and three flood events on
average (735-892 million total exposures; Fig. 1c). Consistent with
flood model estimates®, 90% of exposure is concentrated in south
and southeast Asia. Most flood events were caused by heavy rainfall
(n=751), followed by tropical storms or surges (n=97), snow or ice melt
(n=52) ordambreaks (n=13). The largest cumulative global inundated
area occurred in 2003 and 2007, with highest population exposure
in 2007 and 2010. We highlight notable events with high human and
socioeconomic losses in Fig. 2a-d.

Flood-exposed population2000-2015

The total global population increased by 18.6% from 2000 to 2015,
compared with 34.1% in areas of observed inundation. Between 2000
and 2015, 58-86 million people, or 23%-30% of the total population
exposed, were newly residing in areas where inundation was observed
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Fig.2|Observed inundation and flood duration for selected extreme
events. a, b, Observedinundation exceeding permanent water (from the Joint
Research Program®) for the events in the Global Flood Database with the
highest mortality (a; cyclone Nargis, Burma,2008; roughly 100,000 people)
and with the most expensive recovery (b; hurricane Katrina, USA,2005;

atleast once. The change in the proportion of the population exposed
tolarge flood events (equation (6), Methods) represents aglobal-mean
increase of 20%-24% (s.d.=53%) across 119 countries. Increased flood
exposure was concentrated in low- and middle-income countries
(Fig. 4a). Flood exposure trends are probably underestimated in rap-
idly urbanizing countries, because urban floods are underrepresented
inthe Global Flood Database. We excluded 15 countries from the trend
analyses because the uncertainty in the population estimates was larger
thanthe estimated trends (Supplementary Discussion). The proportion
of the population exposed to floods increased across all flood types,
but was highest in regions with floods caused by dam breaks, where
itincreased by 177% (Supplementary Table 8). Increased exposure
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$60 billion (USD)). c,d, Flood duration exceeding permanent water for the
eventsinthe Global Flood Database with the highest estimated exposure (c;
Indiaand Bangladesh,2004; 27 million people exposed) and with the largest
area (d; Russia, 2003; 98,000 km?). Base maps: Light Gray Canvas, Esri, HERE,
Garmin, INCREMENT P, OpenStreetMap contributors and the GISuser community.

near flood mitigation infrastructure (such as dams) could be due to
the levee effect™.

The proportion of the population in inundated areas increased by
more than 2% in 70 countries and by more than 20% in 40 countries.
Example locations with large population growth in observed inunda-
tion areas include Guwahati, India and Dhaka, Bangladesh (Fig. 3¢, d).
Countries withincreased flood exposure were concentrated in Asiaand
sub-Saharan Africa. Large basins in south and southeast Asia (Indus,
Ganges-Brahmaputra and Mekong) had the largest absolute numbers of
people exposed (17.0-19.9 million,107.8-134.9 million and 20.2-32.8 mil-
lion, respectively) andincreased proportions of the population exposed
toinundation (36%,26% and 11%, respectively; Supplementary Table 7).
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Fig.3|Population dynamics per pixel (250-mresolution) in observed
inundated areas, 2000-2018. a, New Orleans, USA, loses population after
hurricane Katrina. b, Manaus, Brazil; no population change. ¢, Dhaka,
Bangladesh, exhibitsincreasing populationininundated areasin the

In21 countries, there waslittle changeinthe proportion of the population
exposedtofloods (between-3%and 2% growth), especially where popula-
tions have declined in eastern Europe and Russia®. Population growth in
floodplains was heterogenous across countries. For example, in Brazil,
flood exposure increased on average, but little to no population growth
was observed ininundated areas recorded in the city of Manaus (Fig. 3b).

In28 countries, the proportion of the population exposed to floods
decreased by more than 3%. Forexample, inthe US, the flood-exposed
population decreased in New Orleans after hurricane Katrina (Fig. 3a)*.
Our dataindicate that the flood-exposed population decreased in Sri
Lanka, potentially because nearly 500,000 people* were displaced
after the 2004 tsunami, asaresult of policies that required residents to
relocate100 mfromthe shoreline. Inthe Yangtze basin, the proportion
of the population exposed to floods decreased by 7%. MODIS prob-
ably did not captureincreasesinurban flood exposurein at least eight
countries with rapid urbanization (for example, with annual urbaniza-
tion greater than 3%; Angola, Afghanistan, Cambodia, Namibia, Chad,

peri-urbanzone.d, Guwahati, India, an urbanizing town on the Brahmaputra
River hasrepeatedly been exposed to flooding over the past two decades. Base
maps: Google, 2015.

Senegal, Sierra Leone and Oman*, see double asterisks in Supplemen-
tary Table 5).

Estimated flood exposure 2010-2030

We calculated the population that will be exposed to floods in the
near future (2010-2030) in countries with sufficient MODIS obser-
vations (n = 119 countries), using the World Resources Institute
flood-risk analyser Aqueduct®. Across these countries, the flood
model (GLOFRIS) estimates that 580 million people were exposed to
al00-year-return-period flood in 2010. By 2030, the World Resources
Institute estimates that up to 758 million people will be exposed in
the100-year flood zone, with the additional 179.2 million people being
exposed as a result of demographic shifts (116.5 million people) or
climate change (50.3 million people; assuming representative concen-
tration pathway (RCP) 8.5), and synergistic climate-land use interac-
tions (12.4 million people). The proportion of the population exposed
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Fig.4|Changeinthe proportionofthe populationexposedto floods
observed from2000 to 2015 and predicted for 2030 per country.

a, Multiplicative change from 2000 to 2015 in the proportion of the population
exposed to observed inundation (equation (6), Methods). b, Multiplicative
change from2010t02030inthe proportion of the population exposed to
floods. (equation (7), Methods). The change ranges (coloured shading) inaand
barefromref.” to facilitate comparison. ¢, Countries where the proportion of
the population exposed to floods: (1) grew from 2000 to 2015 (multiplicative
change>1.02inaand <0.97 inb; pink; ‘decreasing’ flood exposure); (2) is

to floods is expected to increase globally by 2030, but with variation
across countries (Fig. 4b; global-meanincrease of 4%,s.d.=90%) and no
sensitivity to thereturn period (Extended DataFig. 8).In 57 countries,
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Decreased in the past and
will increase in the future

Increased in the past and
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expected togrow from 2010 to 2030 (multiplicative change >1.02inband
<0.97ina;blue; ‘new’ flood exposure); (3) grew from 2000 to 2015 and is
expected to grow from 2010 to 2030 (multiplicative change >1.02inaand b;
purple; ‘continuously increasing’ flood exposure); and (4) is expected to
remain constant or decrease (multiplicative change <1.02inaandb; orange;
‘never increasing or little change’ in flood exposure). Countries showningrey
hadinsufficient flood observations or population uncertainty. Base maps:
GADM (Global Administrative Areas) 2018, version 3.6.

the increase in flood exposure is expected to outpace future popula-
tion growth, especially in Asia and Africa’. Although we are already
halfway towards these projections, they remain uncertain because of



uncertainty in climate* and future population models. The difficulty
inpredicting changes in migration patterns and country-specific urban
development means that increases in future flood exposure could be
underestimated where urbanizationis rapidly increasing.

We compare the change in the proportion of the population exposed
to observed large flood events in the recent past (between 2000 and
2015) and predicted to be exposed in the near future (between 2010
and 2030) for the 106 countries with robust population data, using
equation (7) (Methods). We identify countries for which a change in
flood exposure greater than the population growth is new or continu-
ously increasing, and for which the change in flood exposure relative
to populationgrowthis decreasing or the same. For this classification,
‘new’ signifies flood exposure increasing more rapidly than popula-
tion only in the future period; ‘decreasing’ signifies flood exposure
increasing more rapidly than population only in the past period; ‘con-
tinuously increasing’ signifies flood exposure increasing more rapidly
than population growthinboth time periods; and ‘never increasing or
little change’ signifies flood exposure increasing more rapidly than
population growth in neither time period.

Nine regions and 32 countries, spread across four continents, have
‘continuously increasing’ flood exposure (Fig. 4c, Supplementary
Tables 4, 5). Five of these countries (four in Africa plus India) exhibit
high continuing increases (more than 20%) in the proportion of the
population exposed to floods. Five regions and 25 countries will have
‘new’ flood exposure, concentrated in Europe and North America, with
the highest increases (more than 50%) in the flood-exposed proportion
in Oman and Sudan. Although 3 regions and 29 countries have ‘decreas-
ing’ flood exposure, models still estimate that 2.2 million additional
people will be exposed to 100-year-return-period floods by 2030 in
those countries. Three regions (Melanesia, Central Asia, and Western
Asia (the Middle East)) and 20 countries have seen ‘never increasing
or little change’in flood exposure.

Discussion

Ourresults provide evidence from satellite observations that increases
inflood exposure are higher (20%-24% from 2000 to 2015) than previ-
ously estimated (2.6% from 1970 to 2010)”. We find that the proportion
of the population exposed to floods increased in 70 countries, across
all continents. This finding is in contrast to previous studies that report
increasesinonly 22 or 55 countries, concentrated in sub-Saharan Africa
and Asia”°. We identify additional increases in flood exposure in south-
ernAsia, southern Latin Americaand the Middle East. Our estimates are
higher than previous ones probably because our observations capture
floods caused by dam breaks, pluvial events and snowmelt, which are
notincludedinglobal models. Inaddition toincreased flood exposure
intherecent past, weidentify 57 countries where exposureis predicted
to grow, indicating flood-prone development patterns that place lives
and livelihoods at risk.

There are four limitations in our analysis: (1) the incomplete event
record, which does not include smaller yet impactful flood events**;
(2) the limited ability of MODIS to map urban floods; (3) the uncertainty
inthe spatial population distribution; and (4) the uncertainty in predict-
ing climate extremes. The Emergency Events Database® estimates that
more than 1.1 billion people were exposed to flood events from 2000
t02018,159-208 million more people than estimated by our database.
Our study probably underestimates flood exposure trends in rapidly
urbanizing countries, owing to uncertainty in satellites and population
growthmodels. The population dataused in this study tend to overesti-
mate observed flood exposure?’, with uncertainties too large toreliably
estimate a flood trend for 15 countries (Supplementary Discussion).

Future work could improve flood-exposed population estimates by:
(1) incorporating more events (for example, through social media*) and
satellites over longer time periods or at higher resolution; (2) model-
ling event extents where satellite temporal coverage is insufficient (for

example, flash floods); (3) assigning return periods to compare trends
from observations to models; and (4) improving spatial estimates of
the past, present and future global population.

The Global Flood Database provides a catalogue of global spatial
flood event data at 250-m resolution, available for public download.
These data could aid calibration of flood models and comparison to
improve modelled flood hazard and exposure estimates. Identifying
humansettlement growthin areas of observed inundation couldinform
adaptation strategies such as mitigation and managed retreat*¢. Flood
observations may affect the pricing of financial instruments such as
municipal bonds* and insurance*®, and may aid planning for a chang-
ing (or already changed) tax base. Population growthin the observed
inundated areas is largely due to increased economic development
and migration to floodplains. Floodplains may be expanding because
ofincreasingimpervious surface area* and climatic changes™. Increas-
ing flood exposure is also rooted in historical and political processes
that produce conditions that may make settling in floodplains the only
option for vulnerable populations®. Vulnerability analyses, together
with the improved flood exposure estimates presented here, should
driveinvestmentinflood adaptation directed to the people and places
that need it most.
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Methods

Flood event catalogues

We used the DFO flood event catalogue as the source for identifying
dates and approximate locations of 4,712 major flood events since
1985 (as of 31 December 2018; Extended Data Fig. 1a). Other publicly
available global flood event catalogues, such as the Emergency Events
Database (Em-Dat)*, have limited location data at the country level.
Mappingentire countrieswhenanevent occursinasmall areaor crosses
borders introduced computational challenges and errors. The DFO
database provides spatial estimates of flood locations (for example,
points and polygons), not available in Em-Dat, that allow us to filter
satellite imagery repositoriesin focused areas for application of flood
detection algorithms. DFO also lists the main flood cause, which we
simplified into four categories: dams, heavyrain, snow or ice melt, and
tropical storms and surges (Supplementary Tables 6, 8).

The inclusion criteria for DFO (primarily large-media-coverage
events, including those covered by FloodList (http://floodlist.com/))
and Em-Dat (10 or more flood-related deaths or at least 100 people
affected) differ and possibly introduce bias. We compared DFO and
Em-Dat events temporally and spatially at the country level to assess
the differences. We matched the DFO and Em-Dat events over the study
period (2000-2018; during the satellite datarecord) by using country
names and overlapping date periods, using the fuzzyjoin R package®.

The number of total flood events in the DFO from 2000 to 2018
(n=3,195) is greater than that in Em-Dat before 2009 (n = 3,010), but
lessthanthatin Em-Dat after 2009 (Extended DataFig. 9a). The number
offlood events per yearin DFO and Em-Dat s positively and significantly
correlated over time (Pearson correlation r=0.591, P< 0.01), consist-
entwith previous results for 1985-2019 (r=0.636, P< 0.001). Spatial
comparison reveals that DFO reports more floods than Em-Dat in the
US (192 more events), Australia (79 more events) and Russia (31 more
events), but fewer eventsin South America (36 fewer events), Central
America (30 fewer events), the Caribbean (20 fewer events) and Africa
(166 fewer events; 94 fewer in west Africa; Extended Data Fig. 9b). This
comparison between the databases suggests that the DFO represents
trendsin major flood events over time, but may underrepresent floods
in Africaand South America.

Satellite dataand inundation detection algorithm

For historical flood observation, we use the MODIS instrument onboard
NASA’s Terra and Aqua satellites. MODIS is an optical satellite com-
monly used for inundated area mapping®*>*¥, is freely available and
has had consistentdaily coverage since February 2000 and twice-daily
coverage since February 2001. The DFO contains 3,127 eligible flood
events that co-occurred with MODIS imagery (Extended Data Fig. 1b).

We used the Google Earth Engine platform®® to preprocess and apply
water detection algorithms to the MODIS images. The polygon areas
provided by DFO represent approximate areas affected by the events.
Therefore, we selected all HydroBASINS Level 4%°° watersheds that
intersect with the DFO event polygon as our mapping unit (region of
interest) for each event. For each event in the database, we collected
and analysed every MODIS image acquired over the selected watersheds
duringthe event date range provided in the DFO. In total, we analysed
12,719 individual MODIS tiles across the 3,127 events (Extended Data
Fig.1).

Terra(MODO09GA/GQ) and Aqua (MYDO9GA/GQ) MODIS images used
inthisstudy were corrected for atmosphericscattering and absorption
to provide estimates of surface reflectance at resolutions of 250 m and
500 m®. MODIS data provide reflectance values (stored as digital num-
bers scaled by 10,000) in the visible (457-670 nm) and near-infrared
(841-1,250 nm) wavelengths at 250-mresolution; short-wave-infrared
(1,628-2,155 nm) wavelengths commonly used to identify surface
water are provided at 500-m resolution. We pan-sharpened the
short-wave-infrared band to 250 m using an adapted version of the

corrected reflectance algorithm®? to match the resolution of other
bands.

Estimates of inundation extent were produced at 250-m resolution
using thresholding approaches based on an existing algorithm®. We
produced inundation maps for every event using four versions of the
algorithm: 3-day standard, 2-day standard, 3-day Otsu and 2-day Otsu.

The ‘standard’ versions of the algorithm identify water using fixed
threshold values on stored reflectance values (digital numbers) of
the short-wave-infrared (SWIR) band (band 7;1,628-1,652 nm) and an
index, B2Bl,,;,, defined as

_ DNyg+135
BIB2raio = DN,q+1,0811 W

where DNy and DN,4 are the digital numbers of the near-infrared
(band 2) and red (band 1; 621-670 nm) bands. A pixel is classified as
water via the following:

pixel = DNred <CA Bleratio < Kl A DNSW]R < KZ' (2)

water

In the standard algorithm, K; = 0.7, K, = 675 and C=2,027. The con-
stants in equations (1) and (2) were determined empirically (R*= 0.91)
using regression discharge data from the US Geological Society
(USGS)-gauged river reaches®.

The ‘Otsu’ versions of the algorithm adjust the thresholds by estimat-
ing K; and K, (equation (2)) adaptively for each flood event****, Otsu
thresholding requires abimodal distribution, in our case representing
spectral reflectance of water and non-water, to determine a thresh-
old that minimizes interclass variance (that is, misclassification). We
extracted asample of 2,500 water and non-water pixels (1,250 sampled
for each class) from a median composite of MODIS images for each
flood event, with clouds removed using the internal cloud-state band.
Water and non-water pixels for each flood event were differentiated by
matchingthe flood event year to the permanent water classification for
that year from the Joint Research Center global surface-water yearly
history dataset®. From our sample, interclass variance was calculated
as the between sum-of-squares (BSS):

BSST:Z (mr,k_mr)z' 3)
k

where DNy, is the average mean surface reflectance (provided as a
digital number) in band Tand class k defined by aselected threshold.
BSS;was calculated iteratively across each bin of abimodal histogram,
representing candidate threshold values, for B2B1,,;, and DNgyz. The
maximum BSS;, and thus the minimized interclass variance, was
selected as a threshold for both B2B1,,;, and DNgyz, and then applied
to equation (2) (Extended DataFig. 2a, b). Using the flood events that
passed quality control (see below), the average Otsu thresholds for
B2B1,,;, and DN,z Wwere K;=0.77 and K, =599, respectively (Extended
DataFig.2c,d). Comparedto the standard thresholds, the Otsu method
provides threshold estimates that represent global water conditions
asopposed to USGS gauge data. Although the Otsu method estimates
event-optimized thresholds, the fact that the median Otsu thresh-
olds approximate the standard thresholds confirms that the standard
thresholds perform consistently on a global basis.

We use equation (2) to classify each MODIS image over a region
of interest and period of a flood event. After classifying each MODIS
image, using either standard or Otsu versions, we calculate multiday
composites toreduce false detections. Using 3-day composites, a pixel
maintains a water classificationif at least three observations out of a
possible six (at least 50%) were classified as water; 2-day composites
require two observations out of four (atleast 50%). Reducing images to
multiday composites removes misclassifications due to cloud shadow,
a common misclassification with water®*. We did not mask clouds
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with the MODIS 1-km internal cloud-state band, because it removed
large portions of flooded area detectable under thin or cirrus cloud
conditions. To prevent confusion between water and terrain shadows,
areas with slopes greater than 5° were masked out of the final clas-
sification using a digital elevation model®, similarly to other water
detection studies®.

Inundated pixels are defined as those classified as water following
the 3- or 2-day compositing and that lie outside of permanent water
defined by the Global Surface Water dataset?. In the Global Surface
Water dataset, pixels areidentified as permanent water when the Land-
satobservationsin1985-1999 and in2000-2016 have water presence.
After post-processing, each flood event has four data products (3-day
standard, 2-day standard, 3-day Otsu and 2-day Otsu), each of which
contains four bands: (1) the maximum extent of inundation; (2) the
number of days inundated; (3) the number of clear observations; and
(4) the proportion of clear observations.

Evaluating the inundation detection algorithm

To assess the accuracy of the Global Flood Database, we identified
123 flood events with coincident Landsat 5, 7 and 8 imagery at 30-m
resolution available within 24 h of the day of maximum inundation
and less than 20% cloud cover. Maximum inundation dates were
estimated by selecting the day (between the start and end dates for
each event) with the largest inundated area estimated by the flood
detection algorithm. The 123 flood events used for accuracy assess-
ment span 15 biomes, representing diverse landscape conditions®®
(Extended DataFig. 3).

The number of sampling points selected in remote sensing analysis
can affect map accuracy®®. We conducted sensitivity analysis to deter-
mine the number of validation points required to minimize the variance
inprecision, recall and overall accuracy. We sampled 500 points for 10
floods events, stratified as 25% in permanent water, 50% in flood water
and 25% innon-water regions. Points were randomly subsampled, with-
outreplacement, toassessaccuracy from 0to 500 points (Extended Data
Fig.4a). We found that the standard deviationin accuracy fellbelow 0.1
when 250 or more points were sampled, and therefore chose to sample
250 points per flood event for the remainder of the dataset.

Interpretation of validation points was undertaken by a team of ana-
lysts whoidentified each point as water, non-water or no data, totalling
30,685 validation points. These analysts had access to Landsatimages
visualized in natural colour, false-colour infrared and two indices that
highlight water (the normalized difference vegetation index and the
modified normalized difference water index)***’ to decide whether each
pixel was atleast 50% dry or wet. Each validation point was assessed by
three separate analysts, with the majority vote determining the class
of the validation point.

Classification agreement and errors were calculated by comparing
per pixel classes from the produced flood maps to the validation data
(Supplementary Table 1). Errors of omission (&,,,,) and commission
(&com)’¢ were calculated as follows:

__h
Eom™ tp+f,-1 4 (4)
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where t,is the count of true positives, f, is the count of false negatives
andf,,is the count of false positives.

The 3-day standard algorithm performed best, with an overall accu-
racy of 83%.43% of floods had accuracies of more than 90% and 65% had
accuracies above 75% (Supplementary Table 2). The standard version
of the algorithm was more consistent than the Otsu version. Although
Otsu thresholds reduced false detections and increased accuracy in

some events, other events resulted in overpredicted flood extent
(Extended Data Fig. 4b). Errors of omission had no clear geographic
pattern, whereas errors of commission were inflated at higher latitudes
(Extended DataFig. 5).

Flood map quality control

To create thefinallibrary of flood maps, every map underwent a qual-
ity control process to eliminate poor-quality maps and choose the
best map between the two thresholding methods. Because the 3-day
composite versions of the algorithms had higher accuracy than the
2-day composite versions on average, all final maps were chosen from
the 3-day composite results (Extended Data Fig. 4c). Each flood map
(n=3,195) was visually inspected to assess whether the map was a suit-
able representation of flooding. We used a quality control procedure
similar to that for the NASA flood detection algorithm?, Quality con-
trol was completed by analysts, using the metrics summarized here
(see Supplementary Table 3 for a complete list). Analysts recorded:
(1) whether a flood map mapped area additional to permanent water
(from water masks?*® or Google Earth); (2) whether a flood map was
obscured by clouds; and (3) which version of the algorithm (stand-
ard or Otsu) best matched visible water from MODIS imagery for the
maximum inundation date. They determined the product tobe a use-
ful representation of the flood event if it mapped inundation beyond
permanent water and was not largely obscured by clouds. To make
quality control decisions, analysts viewed the DFO polygon, all original
MODIS imagery for the flood event, the standard flood map, the Otsu
flood map, underlying high-resolution satellite imagery from Google
Earth and a hyetograph of the 95th percentile of precipitationin the
region of interest estimated by the PERSIANN data product®.

279 flood events were assessed by at least two separate analysts to
calculateintercoder reliability. Analysts agreed on classifying the flood
event as “a useful representation of the flood event” (Supplementary
Table 3, question 3) for 203 events, representing 73% intercoder reli-
ability. Flood events marked as ‘maybe’ or for which analysts disagreed
were quality checked by B.T. to make final decisions.

Some floods of low quality may be present in the database that should
not have passed quality control, and local knowledge of any area should
be leveraged when using these global data. We encourage users to
pair our online catalogue of events and flood dates with the MODIS
worldview tool (https://worldview.earthdata.nasa.gov/) to visually
examine whether additional flood extent could be mapped by down-
loading individual MODIS images where water is present in only 1-2
observations and therefore underestimated in the 3-day composites.
Supplementary Table 9 includes the quality control information for
each flood event.

Quality control results yield 913 flood maps determined to be use-
ful representations of flooding (29.4% of the all DFO events that were
mapped). Maps that used Otsu thresholding (124 flood extents; 13.6%)
were shown to better capture flood extent than those that used stand-
ard threshold, but most flood maps used the standard threshold (789
flood extents; 86.4%). The Global Flood Database produced by this
study therefore includes 789 maps using the standard threshold and
124 maps using event-specific Otsu thresholds.

Alarge proportion of flood events from the DFO (2,212 events; 43.1%
of events mapped) did not reveal areas of widespread flooding and
failed quality control (Extended Data Fig. 6). The top three reasons
noted for failing quality control are extreme cloud cover (n = 495;
16% of events), no standing water beyond existing permanent water
(n=300;10% of events) and unmapped floodsinurban areas (n=44;
1.5% of events). MODIS may fail to capture: (1) rapid, flash flood events;
(2) small channels of water below 250-m resolution (for example,
flooded streets in urban areas’); (3) inundation below dense canopy
cover (for example, greater than 60%)”’; and (4) maximum inunda-
tion if the event catalogue start and end dates are not inclusive of
the peak flood day.
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Estimating observed flood exposure, recent past
To examine flood exposure trends, we use the multiplicative change
inthe proportion of the population exposed to floods between 2000
and 2015":

2015

2000-2015 _ p?ems/ptot (6)

fe 2000 *

change, =000
pfe /ptot

Therefore, chamgeéfoo’2015 =1.35 is equivalent to a 35% increase;

change; °"?*" =1 (that s, no change) occurs when the total popula-
tion and flood-exposed population increase or decrease at the same
rate.

Each country’s statistic is calculated individually (Supplementary
Table 5) and the global meanis anaverage across countries (weighting
each country equally). We also estimate the change in the proportion of
the population exposed to floods for distinct flood types (Supplemen-
tary Table 8) and for the five basins with the largest total population
exposed to floods in our archive (UK, Indus, Ganges-Brahmaputra,
Mekong and Yangtze; Supplementary Table 7).

To estimate the global flood-exposed population, we calculated the
maximum inundated area across the Global Flood Database between
2000and 2018. This observed inundated area was intersected with the
GHSL foryears 2000 and 2015 to calculate the flood-exposed popula-
tion. GHSL was selected because of its global availability over time with
a consistent method, matching resolution of MODIS (250-m pixels)
and better accuracy compared to other globally available population
data””. GHSL allocates population from census data (within several
years of 2000 and 2015) according to the intensity of built-up-area
estimates from Landsat (for approximately 2000 and 2015). Other
global gridded population datasets either use inconsistent methods
over time (for example, Landscan)™ or inflate estimates in rural areas
because population is not allocated on the basis of built-up area®””.

GHSL population estimates have multiple sources of error, including
census estimates, incorrect estimation of built-up area or failing to dis-
tribute populationinrural areas where forest cover obscures built-up
area.Unfortunately, neither the Gridded Population of the World (GPW)
nor GHSL datasets provide uncertainty estimates’. To understand
potential sources of error, we conducted a sensitivity analysis on the
flood-exposed population in 2015 estimated by GHSL compared to a
higher-resolution dataset, HRSL (Supplementary Discussion). HRSL
was selected as a second dataset for its high resolution (30-m) and
near global representation (n =183 countries).

We found that the global-mean bias of HRSL to GHSL was 0.67
(s.d. = 0.40), indicating that GHSL systematically predicts higher
flood-exposed populations. The bias of GHSL to predict more exposed
population was not constant by region; bias was three times as highin
Africacomparedto Europe (Supplementary Discussion, Extended Data
Fig. 7). We estimate all absolute numbers of exposed populationina
range, using upper and lower bounds estimated from the two popu-
lation datasets. Countries (n =15) for which the potential population
error spread was higher thanthe flood trend are notincludedintrend
analyses (Supplementary Table 5, single asterisks).

Owing to the potential noise of scattered singular flood pixels, espe-
cially along coastlines, which contain mixed pixels at the ocean-land
interface, we removed isolated pixels (not connected to at least two
other pixels) for area and population calculations. This reduced the
population exposure count globally by approximately 20 million peo-
ple, but did not change the results of the comparison to global flood
models or trends.

The flood-exposed population was estimated per country by sum-
ming populations residing in the observed floodplain for years 2000
and 2015. Countries with a ratio of flood maps to total known flood
events from the DFO of less than 0.13 (the 50th percentile across all
countries) were marked as having insufficient data (n = 86 countries;

Extended Data Fig. 6¢), leaving 119 countries for this trend analysis.
Country estimates of the populationinundated in at least one observed
flood event from 2000 to 2018 are significantly correlated with flood
exposure estimates from GLOFRIS” for the 100-year return period
(r=0.89, P<0.001; Extended Data Fig. 10). These results suggest that
thedistribution of the flood-exposed population recorded in the Global
Flood Database is consistent with results from aflood model, and that
the data may be used to compare past and future trends.

Estimating modelled flood exposure, near-term future
Estimates of the population exposed to future floods is taken from
Aqueduct¥, for each country available in the Global Flood Database and
for which robust population data are available based on uncertainty
analyses (n=106). These data are from the output of GLOFRIS, which
uses an average of five climate model outputs coupled to a hydrologic
and hydraulic model. We used the RCP 8.5 climate model results and
the100-year flood zone, whichis consistent with other flood exposure
studies”®"”°, and the SSP2 socioeconomic pathways scenario (which
predicts future growth will follow historical patterns)®. Flood exposure
estimates for 2030 remain uncertain because climate models exhibit
high uncertainty for extreme events and often disagree on precipitation
trends*. The multiplicative change in the proportion of the population
atrisk of flood exposure is

2030 /,,2030
20102030 _ Pre /Piot

fe 2010 ’ (7)

change =—>o10
pfe /ptot

where p20°° assumes RCP 8.5 and SSP2, and p2%°° assumes SSP2. We
assessed the sensitivity of our choice of the 100-year flood zone and
found little variation in trends in the population at risk of flood expo-
sure across return periods (Extended Data Fig. 8a-d, Supplementary
Discussion).

We use estimates of flood-exposure population from Aqueduct®
and summarize the methods here. The 2010 flood-exposure popula-
tion data in this product were estimated by intersecting the GLOFRIS
inundated areawith the Landscan 2010 gridded population® corrected
by the SSP22010 population cell estimates. 2030 population estimates
inrural areas downscale SSP2 country estimates proportional to the
2010 Landscan distribution. 2030 urban population estimates down-
scale SSP2 country projections, using projected urban land use from
the Netherlands Environmental Assessment Agency 2UP model® and
local suitability for population growth. This 2030 projection does not
takeintoaccount urban-urbanor urban-rural migration patterns, or
differentiate population growth suitability per country in protected
areas or flood zones (which could be high in the Global South)®. Future
flood-risk estimates may be overestimated in rural areas and underes-
timated in urban areas, which would mean that flood exposure trends
reported here are probably underestimated in rapidly urbanizing
regions.

Data availability

The MODIS Collection 6 datasets analysed here are availablein the NASA
LP DAAC atthe USGS EROS Center (https://Ipdaac.usgs.gov/products/
mod09gav006/, https://Ipdaac.usgs.gov/products/mod09gqv006/)
and are mirrored in the Google Earth Engine data catalogue (https://
developers.google.com/earth-engine/datasets/catalog/MODIS_006_
MODO9GA, https://developers.google.com/earth-engine/datasets/
catalog/MODIS_006_MYDO09GQ). The MODIS NRT Global Flood
Product is available in the NASA LANCE Near Real-Time Data and
Imagery service (https://earthdata.nasa.gov/earth-observation-data/
near-real-time/mcdwd-nrt). The Landsat 5TM, 7ETM and 8 OLI surface
reflectance products used for the accuracy assessment are available
from USGS (https://earthexplorer.usgs.gov/) and are mirrored in the
Google Earth Engine data catalogue (https://developers.google.com/
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earth-engine/datasets/catalog/LANDSAT_LTO5_CO1_T1_SR, https://
developers.google.com/earth-engine/datasets/catalog/LANDSAT LEQ7_
CO1_T1 SR, https://developers.google.com/earth-engine/datasets/
catalog/LANDSAT_LCO8_CO01_T1_SR) The datasets generated for this
study from the Global Flood Database are available on the Cloud to
Street website (http://global-flood-database.cloudtostreet.ai) and
aremirrored in Google Earth Engine (https://developers.google.com/
earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_
V1).Supplementary Tables provide summary estimates foreachevent,
and all data may be downloaded from http://global-flood-database.
cloudtostreet.ai/. Source data are provided with this paper.

Code availability

Google Earth Engine’s web interface allows the flood mapping algo-
rithm defined in equations (1) and (2) to be applied on any MODIS
images. Code to make all figures and flood maps are publicly available
at https://github.com/cloudtostreet/MODIS_GlobalFloodDatabase.
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Extended DataFig.2|Example ofbimodal histograms used to calculate
adaptive thresholds for water classifications that approximate, on
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a, b, Example bimodal histograms (left axes) with interclass variance (ICV; blue
lines, right axes) extracted from MODIS imagery used to determine optimal
thresholds for B2B1,,, (K;; @) and DNgy, (K,; b). The dashed red and black lines
reflectthe estimated Otsu and standard thresholds, respectively.

¢, d, Distribution of estimated Otsu thresholds calculated for each flood event
across the Global Flood Database (n=913), for B2B1,,;, (K;; ¢) and DNgy (K5; d).
Theaverage Otsu threshold across the Global Flood Database for B2B1,,,,
(K,=0.77; dashed redlinein c¢) and DNgy (K,=599; dashed redlineind) are
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a, Sensitivity plot of accuracy metrics with random sampling of 500 points for
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four water detection methods, where the centreline represents the median,
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¢, Accuracy statistics, given as the mean and standard deviation (s.d),
summarized for each thresholding method and image composite choice
(metrics per eventin Supplementary Table 2).
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